Fuzzy clustering for symbolic data

نویسندگان

  • Yasser El-Sonbaty
  • Mohamed A. Ismail
چکیده

Most of the techniques used in the literature in clustering symbolic data are based on the hierarchical methodology, which utilizes the concept of agglomerative or divisive methods as the core of the algorithm. The main contribution of this paper is to show how to apply the concept of fuzziness on a data set of symbolic objects and how to use this concept in formulating the clustering problem of symbolic objects as a partitioning problem. Finally, a fuzzy symbolic c-means algorithm is introduced as an application of applying and testing the proposed algorithm on real and synthetic data sets. The results of the application of the new algorithm show that the new technique is quite efficient and, in many respects, superior to traditional methods of hierarchical nature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy clustering algorithms for mixed feature variables

This paper presents fuzzy clustering algorithms for mixed features of symbolic and fuzzy data. El-Sonbaty and Ismail proposed fuzzy c-means (FCM) clustering for symbolic data and Hathaway et al. proposed FCM for fuzzy data. In this paper we give a modi3ed dissimilarity measure for symbolic and fuzzy data and then give FCM clustering algorithms for these mixed data types. Numerical examples and ...

متن کامل

Wasserstein Metric Based Adaptive Fuzzy Clustering Methods for Symbolic Data

Given the current limitations in fuzzy clustering metric, the aim of this paper is to present new wasserstein metric based adaptive fuzzy clustering methods for partitioning symbolic interval data. Wasserstein metric shows adavantages in digging distribution information in symbolic interval data. Besides, the proposed fuzzy clustering methods also emphasize correlation structure between indices...

متن کامل

The Comparison of Fuzzy Clustering Methods for Symbolic Interval-valued Data

Interval-valued data can find their practical applications in such situations as recording monthlyinterval temperatures at meteorological stations, daily interval stock prices, etc. The primary objectiveof the presented paper is to compare three different methods of fuzzy clustering for interval-valuedsymbolic data, i.e.: fuzzy c-means clustering, adaptive fuzzy c-means clustering a...

متن کامل

Hausdorff Distance Measure Based Interval Fuzzy Possibilistic C-Means Clustering Algorithm

Clustering algorithms have been widely used artificial intelligence, data mining and machine learning, etc. It is unsupervised classification and is divided into groups according to data sets. That is, the data sets of similarity partition belong to the same group; otherwise data sets divide other groups in the clustering algorithms. In general, to analysis interval data needs Type II fuzzy log...

متن کامل

Fuzzy Kohonen clustering networks for interval data

The Fuzzy Kohonen Clustering Network combines the idea of fuzzy membership values for learning rates. It is a kind of self-organizing fuzzy neural network that can show great superiority in processing the ambiguity and the uncertainty of data sets or images. Symbolic data analysis provides suitable tools for managing aggregated data described by intervals. This paper introduces Fuzzy Kohonen Cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Fuzzy Systems

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1998